Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics.

نویسندگان

  • Delia Belelli
  • Dianne R Peden
  • Thomas W Rosahl
  • Keith A Wafford
  • Jeremy J Lambert
چکیده

Among hypnotic agents that enhance GABAA receptor function, etomidate is unusual because it is selective for beta2/beta3 compared with beta1 subunit-containing GABAA receptors. Mice incorporating an etomidate-insensitive beta2 subunit (beta(2N265S)) revealed that beta2 subunit-containing receptors mediate the enhancement of slow-wave activity (SWA) by etomidate, are required for the sedative, and contribute to the hypnotic actions of this anesthetic. Although the anatomical location of the beta2-containing receptors that mediate these actions is unknown, the thalamus is implicated. We have characterized GABAA receptor-mediated neurotransmission in thalamic nucleus reticularis (nRT) and ventrobasalis complex (VB) neurons of wild-type, beta2(-/-), and beta(2N265S) mice. VB but not nRT neurons exhibit a large GABA-mediated tonic conductance that contributes approximately 80% of the total GABAA receptor-mediated transmission. Consequently, although etomidate enhances inhibition in both neuronal types, the effect of this anesthetic on the tonic conductance of VB neurons is dominant. The GABA-enhancing actions of etomidate in VB but not nRT neurons are greatly suppressed by the beta(2N265S) mutation. The hypnotic THIP (Gaboxadol) induces SWA and at low, clinically relevant concentrations (30 nM to 3 microM) increases the tonic conductance of VB neurons, with no effect on VB or nRT miniature IPSCs (mIPSCs) or on the holding current of nRT neurons. Zolpidem, which has no effect on SWA, prolongs VB mIPSCs but is ineffective on the phasic and tonic conductance of nRT and VB neurons, respectively. Collectively, these findings suggest that enhancement of extrasynaptic inhibition in the thalamus may contribute to the distinct sleep EEG profiles of etomidate and THIP compared with zolpidem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The general anaesthetic etomidate inhibits the excitability of mouse thalamocortical relay neurons by modulating multiple modes of GABAA receptor-mediated inhibition

Modulation of thalamocortical (TC) relay neuron function has been implicated in the sedative and hypnotic effects of general anaesthetics. Inhibition of TC neurons is mediated predominantly by a combination of phasic and tonic inhibition, together with a recently described 'spillover' mode of inhibition, generated by the dynamic recruitment of extrasynaptic γ-aminobutyric acid (GABA)A receptors...

متن کامل

Synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts.

GABAA receptors mediate the majority of fast synaptic inhibition in the brain. The accumulation of these ligand-gated ion channels at synaptic sites is a prerequisite for neuronal inhibition, but the molecular mechanisms underlying this phenomenon remain obscure. To further understand these processes, we have examined the cellular origins of synaptic GABAA receptors. To do so, we have created f...

متن کامل

Homeostatic competition between phasic and tonic inhibition.

The GABAA receptors are the major inhibitory receptors in the brain and are localized at both synaptic and extrasynaptic membranes. Synaptic GABAA receptors mediate phasic inhibition, whereas extrasynaptic GABAA receptors mediate tonic inhibition. Both phasic and tonic inhibitions regulate neuronal activity, but whether they regulate each other is not very clear. Here, we investigated the funct...

متن کامل

GABAA receptor alpha 4 subunits mediate extrasynaptic inhibition in thalamus and dentate gyrus and the action of gaboxadol.

The neurotransmitter GABA mediates the majority of rapid inhibition in the CNS. Inhibition can occur via the conventional mechanism, the transient activation of subsynaptic GABAA receptors (GABAA-Rs), or via continuous activation of high-affinity receptors by low concentrations of ambient GABA, leading to "tonic" inhibition that can control levels of excitability and network activity. The GABAA...

متن کامل

Ethanol modulates synaptic and extrasynaptic GABAA receptors in the thalamus.

Drinking alcohol is associated with the disturbance of normal sleep rhythms, and insomnia is a major factor in alcoholic relapse. The thalamus is a brain structure that plays a pivotal role in sleep regulation and rhythmicity. A number of studies have implicated GABA(A) receptors (GABA(A)-Rs) in the anxiolytic, amnestic, sedative, and anesthetic effects of ethanol. In the present study, we exam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 50  شماره 

صفحات  -

تاریخ انتشار 2005